Top Five Tips to Protect PCBs from Harsh Environments

Last month, I began my new series of columns on encapsulation resins by selecting five frequently asked customer questions regarding resin chemistries and properties, and typical resin applications and their limitations. In this column, I’m taking this introduction a step further by listing what I believe are the top five tips for circuit designers and manufacturers who seek to ensure that the in-service reliability and longevity of their electronic assemblies and products are fully addressed.

Five Top Tips

1. First, think very carefully about the sort of environment your PCB is likely to encounter. It is easy to over-engineer a product so that it will survive the very worst of conditions, but worst conditions may only be fleeting or transient. Therefore, a resin solution with a lower temperature performance specification will often cope. Take temperature extremes as an example; your application may experience occasional temperature spikes of up to 180°C, which you might feel deserves treatment with a special resin. However, such excursions may only be short-lived. Under normal operating conditions, the PCB might only be subjected to a maximum temperature of 120°C, opening up a wider choice of resin types and methods of application.

Similarly, the required chemical resistance of your chosen resin will depend on the duration and/or extent of the chemical contamination. For example, there is a considerable difference in terms of the extent of chemical damage between a thin layer of a contaminating chemical on the resin surface that is wiped off within five minutes, and 500 ml of a chemical present on the resin surface for one hour or more. Complete immersion takes the requirements to an even higher level. Furthermore, the range of chemicals that a PCB might eventually be exposed to is often quite limited, and almost certainly not the broad range that is frequently listed at the design stage just to be on the safe side.

2. Environmental factors that normally affect a PCB include temperature, chemical attack, physical shock (vibration), and thermal shock. The trick is to decide which of these is likely to have the greatest impact upon your PCB and then concentrate on making an appropriate resin choice. Each of the three main resin types (epoxy, polyurethane, and silicone) have strong points as well as weaknesses.

Silicone resins have the broadest continuous operating temperature range of any of the resin chemistries, so they are a natural choice for both high- and low-temperature applications as well as those subject to thermal shock. They also maintain their flexibility over this temperature range with very little sign of degradation over time. On the downside, silicones have poor adhesion on certain substrates, and their chemical resistance is not as good as that provided by an epoxy resin.

As well as offering excellent chemical resistance, epoxies provide good temperature performance. However, due to their rigid nature, epoxies are not as good at protecting against physical shock. Polyurethanes, on the other hand, have excellent moisture and physical shock resistance but deliver poor high-temperature performance. As a result, polyurethanes are best restricted to applications operating in the -40 to +120°C region. However, they do provide similar levels of flexibility and better adhesion to many substrates compared with silicones at a lower cost.

To read this entire column, which appeared in the December 2018 issue of Design007 Magazine, click here.

For detailed information on this subject, download The Printed Circuit Assembler's Guide to... Conformal Coatings for Harsh Environments.

Back

2019

Top Five Tips to Protect PCBs from Harsh Environments

01-02-2019

First, think very carefully about the sort of environment your PCB is likely to encounter. It is easy to over-engineer a product so that it will survive the very worst of conditions, but worst conditions may only be fleeting or transient. Therefore, a resin solution with a lower temperature performance specification will often cope. Take temperature extremes as an example; your application may experience occasional temperature spikes of up to 180°C, which you might feel deserves treatment with a special resin. However, such excursions may only be short-lived.

View Story
Back

2018

Sensible Design: Top Tips for Successful Potting

12-19-2018

For effective potting, ideally, the layout of the circuit components should be such that the material can flow smoothly around them without too much turbulence. When possible, it is always good practice to space components in a regular pattern. Irregular spacing—particularly bunching of components in discrete areas of the PCB—causes the formation of eddies in the resin as it is poured, which can lead to voids and air entrapment, which compromise the thermal performance of the resin.

View Story

Do's and Don'ts of Thermal Management Materials

10-18-2018

Selecting a thermal management material that is broadly applicable to a particular electronic assembly and its predicted operating conditions is a good starting point; however, as with many of these things, the devil is very much in the details! Find out the key considerations in choosing your materials.

View Story

Conformal Coatings: An Evolving Science

09-26-2018

One of the trends impacting the electronics assembly industry is the continuing miniaturization of electronics products. This article sheds more light on coating problems posed by this trend, as well as provide key considerations when it comes to coating properties, selections, and applications. Read on to find answers to five of the best coating-related questions that frequently arise during preliminary consultations.

View Story

Thermal Management Materials: Easing the Decision-Making Process

08-02-2018

There are many different types of thermally conductive materials, and choosing between them will be dictated by production requirements and application design, as well as critical performance factors that must be achieved.

View Story

Protecting PCBs from Harsh, Challenging Environments

07-03-2018

Think very carefully about the sort of environment your PCB is likely to encounter. It is easy to over-engineer a product so that it will survive the very worst of conditions, but worst conditions may only be fleeting or transient. Therefore, a resin solution with a lower temperature performance specification will often cope. Take temperature extremes, for example. Your application may experience occasional temperature spikes of up to 180°C, which you might feel deserves treatment with a special resin.

View Story

My Top Coating Queries

04-04-2018

This is my first of many columns for 2018, and I have decided to share some top trending queries that concern many different applications and areas. LEDs are always a hot topic, as are volatile organic compounds (VOCs) and harsh environment concerns.

View Story
Back

2017

Heat Transfer and Thermal Conductivity: The Facts

12-26-2017

In my first two columns, I presented a broad introduction to the subject of thermal management of electronic circuits. This month I’m taking a closer look at thermal interface materials—how they can be applied to achieve efficient heat transfer, and the significance of bulk thermal conductivity in relation to heat transfer and thermal resistance.

View Story

Thermal Management—The Heat is On

09-25-2017

Thermal management materials are designed to prolong equipment life and reduce incidences of failure. They also maintain equipment performance parameters and reduce energy consumption by reducing operating temperatures, and minimising the risk of damage to surrounding components. Indirectly, they maintain brand reputation, as the reliability of the equipment will be very dependent upon the effectiveness of the thermal management technique used.

View Story

Resins: Cutting Through the Technical Jargon

08-21-2017

This month, I’m going to cut through some of the more heavy-going tech-speak, taking a few of my customers’ more frequently asked questions about resins to try to help you refine your selection process. There’s a lot of ground to cover, but for the purposes of this column, let’s concentrate on the PCB’s operating environment, caring for the components that are to be encapsulated, and the special needs of applications like LED lighting and RF systems.

View Story

Casting a Spotlight on Resin Applications

05-03-2017

Over the last few columns, I’ve given readers pointers on virtually every aspect of potting and encapsulation resins, ranging from their formulations and special properties to their applications, benefits and limitations. It’s probably high time, therefore, to take a step back from the do's and don’ts and focus instead on how these resins are bringing very real benefits to practical electronic and electrical engineering applications. A good starting point is to look at the special requirements of an industry that is enjoying explosive growth: LED lighting.

View Story
Back

2016

Resins: Five Essentials to Achieve the Right Cure

12-19-2016

In my previous column, I looked at some of the critical things you need to consider before selecting your resin. Of course, when it comes to the choice and application of resins, there’s a lot of information to take in, and over the following months I hope to distill this and provide some useful tips and design advice that will help you in your quest for reliable circuit protection.

View Story

Why are Resin Properties So Important?

11-21-2016

I started this series of columns on resins by going back to basics, questioning the core rationale for potting and encapsulation with resins, their fundamental chemistries and how each resin type differs one from the other—indeed, how their individual properties can be exploited to maximise performance under a wide range of environmental conditions. I hope readers found this useful. Of course, when it comes to the choice and applications of resins, there’s a great deal more to discuss.

View Story

The Little Guide to Resins

10-17-2016

I would like to start this series of columns by going back to basics, questioning the core rationale for potting and encapsulation with resins, their fundamental chemistries and how each resin type differs one from the other—indeed, how their individual properties can be exploited to maximise performance under a wide range of environmental conditions.

View Story

Conformal Coatings - Beware the Boards that ‘Bare’ All!

09-21-2016

This month, Phil Kinner departs from his usual format of providing five essential facts about conformal coatings. Instead, he provides an account of a customer’s problem—no company names mentioned, of course—that brought into question the adhesion performance of a coating that they had been using successfully for some time.

View Story

When Coatings Go Wrong

08-23-2016

This month, I consider some of the more common, and often very frustrating, problems that may be encountered when coating electronic circuit boards and components. I also discuss some practical solutions. As we all know, nothing in life is straightforward.

View Story

Coatings—Five Essentials for Designers

06-28-2016

In an ideal world, PCB designs would not have an inherent weak point for corrosion; unfortunately, in the real world, they do. When a weak point is revealed, you are better equipped to deal with it. Often the spacing of components, board finish and distance to ground planes can be optimised for corrosion resistance.

View Story
Copyright © 2019 I-Connect007. All rights reserved.