What is Your Real Output?


Reading time ( words)

How should you define your output? Highest area productivity, lab speed, actual speed, optimum speed, IPC speed, or maximum speed? And is it speed or throughput we should be looking at? Neither is clearly defined, and we all have our rules of thumb (e.g., actual speed is 60% of IPC speed, which is 60% of maximum speed).

Currently, there is only one standard representing a fair comparison between pick-and place equipment: IPC-9850. It measures equipment speed (providing that components are placed within the specified accuracy of the equipment itself). IPC established IPC-9850 in 2002, defining the measurement procedures for specifying, evaluating and verifying surface mount placement equipment. With machine manufacturers producing a wide range of accuracies and outputs, it details how measurements must be made consistently, and is therefore the only real way to compare them. It has become a basic industry reference, but unfortunately doesn’t tell the whole story. Several pick-and-place machine manufacturers, for example, currently claim the industry’s fastest placement speeds on the basis of the IPC reference speed.

One key difference lies between the IPC-9850 speed and the actual speed you will reach in a particular application. And that is where IPC-9850 falls short.

For this reason, IPC published an updated version in January 2012: IPC-9850A. Since the release of this update, it has been adopted by…practically nobody. Admittedly, the new standard is far from perfect, as applications are usually still more complex than even it allows for. It is a step closer to the truth, though. Why have so few adopted it? Why do most manufacturers avoid publishing the results? It seems that this minor change in specification degrades output results so drastically that it is commercially too sensitive.

IPC-9850 and IPC-9850A: The Differences

IPC-9850 speeds are measured by placing a simple matrix of components (for example 80 SOIC-16s or 400 identical 0603 capacitors) on a 200 x 200 mm substrate. However, the standard says nothing about the electrical value of these 400 capacitors, for example. That allows sequential placement machines to use gang pick (simultaneous pick by multiple placement heads) using an optimized placement path. Gang pick, however, artificially inflates the performance figure since it can virtually never be used in an actual customer application. You just don’t get many circuits incorporating hundreds of identical 27-nF capacitors on a board in a small matrix in a 200 x 200 mm area.

Read the full column here.


Editor's Note: This column originally appeared in the March 2014 issue of SMT Magazine.

Share

Print


Suggested Items

RTW IPC APEX EXPO 2019: Panasonic Highlights New Products, IPC STEM Student Outreach Program

02/12/2019 | Real Time with...IPC
Sean M. Murray, GM of North American Sales EAG Group for Panasonic, and Nolan Johnson, I-Connect007 Managing Editor, discuss two new product announcements at the show—PanaCIM process tracker software and MPM-WX—and being a sponsor for the IPC STEM Student Outreach Program.

Super Dry Storage Options to Manage Intermetallic Growth

02/11/2019 | Kelly Dack
Guest Editor Kelly Dack speaks with Richard Heimsch, director of Super Dry, about some of the differences between storing components and other materials for assembly floor storage versus long-term storage, and how Super Dry can help combat intermetallic growth.

IPC APEX EXPO 2019 Show Week Time-lapse Video

02/05/2019 | Real Time with...IPC
From set up to tear down, I-Connect007 captured a 4-day time-lapse video of the show floor from our Real Time with... IPC APEX EXPO booth. In addition, this video includes overhead shots of each of our generous premium sponsor's booths.



Copyright © 2019 I-Connect007. All rights reserved.