Life Beyond 10 Gbps: Localize or Fail!

Reading time ( words)

What does it take to design predictable PCB or packaging interconnects operating at tens of Gbps? Properly identified dielectric and conductor roughness models, known manufacturer geometry adjustments, and properly validated simulation tools are necessary conditions. One of the sufficient conditions is the localization property; to be predictable, all elements of an interconnect link must be localized up to a target frequency. This article introduces and illustrates the localization concept, with the power-flow density computed using the unique Trefftz finite element solver available in Simbeor THz software.

Ideally, all interconnects should look like uniform transmission lines (or wave-guiding structures) with the specified characteristic impedance. In reality, an interconnect link is typically composed of transmission lines of different types (microstrip, strip, coplanar, coaxial, etc.) and transitions between them such as vias, connectors, breakouts and so on. Transmission lines may be coupled to each other that cause crosstalk. The transitions may reflect and radiate energy due to discontinuities in signal and reference conductors. The crosstalk, reflections and radiation cause unwanted and sometime unpredictable signal degradation. If analysis of traces or via hole transitions is possible in isolation from the rest of the board up to a target frequency, the structure is called localized. Structures with behavior that is dependent on other structures and board geometry are called not localized, and they should not be used in multi-gigabit interconnects in general.

Examples of non-localized structures are coupled traces, striplines with non-connected reference planes, traces crossing gaps in reference planes, vias with far, no or insufficient stitching vias (vias connecting reference planes of the connected traces). Analysis of non-localized structures is usually possible only at the post-layout stage with substantial model simplifications that degrade accuracy at higher frequencies. To design predictable interconnects, only localized structures must be used—this is one of the most important elements for design success. The localization is always bandwidth limited for striplines (two reference conductors) and for vias (two or more reference conductors). How do we estimate the localization property of a transition? One way is to run an electromagnetic analysis of the structure with different boundary conditions or simply change simulation area size without changing phase reference planes and evaluate the differences in the computed S-parameters. If the difference is small, the structure may be considered localized and suitable for final design.

To read this entire article, which appeared in the September 2018 issue of Design007 Magazine, click here.



Suggested Items

Technically Appropriate Material Choices are Key to Design Success

05/16/2019 | Nolan Johnson, I-Connect007
Materials are no longer a passive part of the design; they play an active role in the manufacturability, reliability, and speed of a PCB. I-Connect007’s Nolan Johnson and Mike Creeden, founder of San Diego PCB Design, discuss several key characteristics that designers should consider in their material selection process.

EMA: Cadence Moves Simulation Further Up in the Design Cycle

03/15/2019 | Andy Shaughnessy, Design007 Magazine
Cadence Design Systems recently integrated more of its Sigrity capabilities into the front end of its PCB design tools. During DesignCon, Chris Banton of EMA Design Automation spoke with me about how this drive for “model-less analysis” benefits the PCB designer who can now access signal and power integrity, DFM, and electrical rule checking functionality early in the design process and have fewer issues later.

Impact of Serpentine Routing on Multi-gigabit Signal Transmission

11/29/2018 | Chang Fei Yee, Keysight Technologies
Serpentine is a technique to minimize skew or misalignment of differential pairs. The number of segments and intra-pair spacing of serpentining impacts the high-speed signal transmission. As the intra-pair gap is enlarged for serpentining, the characteristic impedance of the PCB trace in differential mode will rise. This leads to impedance discontinuity, signal reflection, and ultimately, attenuation. The signal attenuation is heavily dependent on the number of segments and intra-pair spacing of the serpentine.

Copyright © 2019 I-Connect007. All rights reserved.