HDI PCBs: Make the Right Choice from Design to Volume


Reading time ( words)

Modern electronic products are expected to offer evermore advanced functions, while the products themselves are becoming increasingly smaller. This puts greater demand on the PCB design and the aspects relating to the PCB manufacturing process. There are two key factors for the successful production of HDI PCBs: first, making the right choices at the design stage, and then carefully choosing the factory that can support the specific technical demands of the project.

Whether it’s consumer electronics, computers, automotive or medical technology, the overall trend is reduction in size. Not just through a reduction in actual or finished product size, but also as the components themselves are becoming smaller, so the assemblies must be more densely packed and use smaller features.

Consider the way mobile phones have evolved. A modern smartphone is so much thinner, lighter and smaller than the mobiles we had 10 years ago, but in terms of what it can do, it is light years more advanced than its predecessors. Therefore, the PCBs inside are having to accommodate more and more functions making the design itself much more complex, and all of this on smaller and smaller circuit boards.

The onset of these increasingly sophisticated electronic products, has led to more advanced PCBs becoming more commonplace.

The specifications here require high-density interconnect (HDI) solutions with greater number of layers, and more connections both on the surface and inside the PCB, utilizing finer conductor widths and narrower spaces between them. This all leads to a design that is based upon smaller, laser-drilled microvias (blind vias), since normal through-hole vias simply wouldn’t fit into the space available. Therefore, we are seeing manufacturers producing more boards that also incorporate buried vias. All of which increases the number of interconnections within the board and frees up valuable space on the outer layer for more components to be placed.

The increased number of layers, together with the microvia technology, also requires the use of thinner prepegs and cores than in conventionally manufactured boards which also leads to increased demands upon the factories.

To read this entire article, which appeared in the November 2017 issue of The PCB Design Magazine, click here.

Share


Suggested Items

PCB Cooling Strategies, Part 1

01/19/2018 | Bin Zhou, EDADOC
With the development of communication and IT industries and the ever-increasing demand for information analysis, many chip makers have racked their brains trying to provide customers with better technology, such as increased computing power and storage capacity of chips as well as diversifying their product offerings.

Streamlining Thermal Design of PCBs

01/10/2018 | Dr. John Parry, CEng, Mentor
When designing a PCB, thermal issues are often locked in at the point of selecting and laying out the chip package for the board. After that, only remedial actions are possible if the components are running too hot. Assumptions made about the uniformity of the airflow in these early design stages can mean a disaster for the commercial viability of a PCB if those assumptions are incorrect. A different approach is needed to improve reliability and to optimize board performance. Dr. John Parry of Mentor explains.

Mike Jouppi Discusses his Drive for Better Thermal Data

01/12/2018 | Andy Shaughnessy, PCB Design007
If you mention thermal management in a group of PCB designers and design engineers, Mike Jouppi’s name usually pops up. Mike is an engineer and founder of the Thermal Management LLC consulting firm. He spent years updating IPC’s charts on current-carrying capacity, which had been unchanged since the 1950s. I recently caught up with Mike and asked him to give us his views on the state of thermal management, as well as the tools and standards related to thermal design.



Copyright © 2018 I-Connect007. All rights reserved.